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Background: National Institute on Aging—Alzheimer’s Association (NIA-AA) proposed

the AT(N) system based on β-amyloid deposition, pathologic tau, and neurodegeneration,

which considered the definition of Alzheimer’s disease (AD) as a biological construct.

However, the associations between different AT(N) combinations and cognitive

progression have been poorly explored systematically. The aim of this study is to compare

different AT(N) combinations using recognized biomarkers within the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) cohort.

Methods: A total of 341 participants were classified into cognitively unimpaired

(CU; n = 200) and cognitively impaired (CI; n = 141) groups according to the

clinical manifestations and neuropsychological tests. Cerebrospinal fluid (CSF) Aβ42 and

amyloid-PET ([18F]flutemetamol) were used as biomarkers for A; CSF phosphorylated tau

(p-tau) and tau-PET ([18F]flortaucipir) were used as biomarkers for T; CSF total tau (t-tau),

hippocampal volume, temporal cortical thickness, [18F]fluorodeoxyglucose (FDG) PET,

and plasma neurofilament light (NfL) were used as biomarkers for (N). Binary biomarkers

were obtained from the Youden index and publicly available cutoffs. Prevalence of AT(N)

categories was compared between different biomarkers within the group using related

independent sample non-parametric test. The relationship between AT(N) combinations

and 12-year longitudinal cognition was assessed using linear mixed-effects modeling.

Results: Among the CU participants, A–T–(N)– was most common. More T+ were

detected using p-tau than tau PET (p < 0.05), and more (N)+ were observed using

fluid biomarkers (p < 0.001). A+T+(N)+ was more common in the CI group. Tau PET

combined with cortical thickness best predicted cognitive changes in the CI group and

MRI predicted changes in the CU group.

Conclusions: These findings suggest that optimal AT(N) combinations to determine

longitudinal cognition differ by cognitive status. Different biomarkers within a specific

component for defining AT(N) cannot be used identically. Furthermore, different strategies

for discontinuous biomarkers will be an important area for future studies.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of
dementia, and one of the main causes of complications
and death in the aging population. A series of complex
pathobiological processes is involved in the pathogenesis of
AD, including the deposition of extracellular amyloid plaques,
tau-related intracellular neurofibrillary tangles (NFTs), neuronal
loss and atrophy (Long and Holtzman, 2019). Recently, the
National Institute on Aging—Alzheimer’s Association (NIA-
AA) proposed a research framework based on the pathological
characteristics mentioned above (Jack et al., 2018). The
framework establishes a classification system consisting of
biomarkers of Aβ (A), tau (T), and neurodegeneration (N), and
lists a classic AD biomarker grouping including cerebrospinal
fluid (CSF), MRI, and PET. However, it is not perfectly
concordant among biomarkers within a specific component (A,
T, or N) (Jack et al., 2018; Knopman et al., 2018), and all
examinations are usually difficult to perform on patients, which
may limit its clinical application. Many studies have compared
different biomarkers in a certain component (Mattsson et al.,
2015; Hansson et al., 2018; La Joie et al., 2018), and have
manifested that these biomarkers partially play different roles
in the diagnosis, staging, and the progression of Alzheimer’s
pathology. For example, CSF is suitable for early diagnosis
(Mattsson et al., 2015), and tau PET is related to cross-sectional
cognition of AD patients (La Joie et al., 2018). This means that
different biomarkers need to be selected according to different
clinical needs. But only one study assessed different combinations
of AT(N) biomarkers using BioFINDER participants (Mattsson-
Carlgren et al., 2020). Here, we used a more comprehensive
biomarker group and focused on the relationship between
different AT(N) combinations and longitudinal cognition
decline. We postulated that the prevalence of AT(N) categories
and prediction of longitudinal cognition would vary by different
combinations of biomarkers in cognitively unimpaired (CU) and
cognitively impaired (CI) participants.

MATERIALS AND METHODS

Participants
All participants in this study were from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI), a longitudinal multicenter
study designed to develop clinical, imaging, genetic, and
biospecimen biomarkers for tracking the progression of AD.
Regional ethics committees of all institutions approved the
ADNI study. Written informed consent was obtained from
all participants. The key eligibility criteria were based on the
ADNI protocol. Cognitively unimpaired (CU) participants must
be free of memory complaints and cognitively normal, with
MMSE scores between 24 and 30 (inclusive) and a CDR of 0.
Cognitively impaired (CI) participants must have a subjective
memory concern and were divided into two subgroups, namely:
mild cognitively impaired (MCI) participants and AD dementia
participants. The MCI participants reported MMSE scores
between 24 and 30 (inclusive), a memory complaint, have
objective memory loss measured by education-adjusted scores

on Wechsler memory scale logical memory II, a CDR of 0.5,
absence of significant levels of impairment in other cognitive
domains, essentially preserved activities of daily living, and
an absence of dementia. The AD dementia participants met
NINCDS/ADRDA criteria for probable AD (McKhann et al.,
1984), with MMSE scores between 20 and 26 (inclusive) and
a CDR of 0.5 or 1.0. Demographic and clinical information,
neuroimaging, and biomarker data were downloaded from the
ADNI data repository (adni.loni.usc.edu).

CSF and Plasma Biomarker Analysis
Cerebrospinal fluid β-amyloid (1-42), phospho-tau (181P), and
total tau were analyzed using the electrochemiluminescence
immunoassays (ECLIA) Elecsys following a Roche Study
Protocol (Hansson et al., 2018). Plasma neurofilament light (NfL)
was obtained using the single molecule array (Simoa) technique.

Neuroimaging Acquisition and Processing
The 3T MRI scans were processed before being downloaded as
previously described (Jack et al., 2008, 2010). FreeSurfer (ADNI
phase 1, grand opportunity, and phase 2 data were run with
FreeSurfer version 5.1, while phase 3 with version 6.0) was used
for further analysis. Two MRI measures were used, including
hippocampal volume and cortical thickness. The volume of
bilateral hippocampal was extracted as the regions of interest
(ROI), and was adjusted for the intracranial volume (ICV) by
calculating the residual term (ε) from a linear regression of
hippocampal volume (y) vs. ICV (x) within 128 ApoE-negative
CU participants (Jack et al., 2014). The adjusted hippocampal
volume can be interpreted as a deviation from the expected
hippocampal volume calculated from the given ICV. An AD
signature cortical thickness was composed of mean thickness in
the entorhinal, inferior temporal, middle temporal, and fusiform
cortices (Dickerson et al., 2009).

Amyloid, tau, and metabolic imaging were performed using
[18F]florbetapir, [18F]flortaucipir and [18F]fluorodeoxyglucose
(FDG) PET, respectively. The [18F]florbetapir standardized
uptake value ratios (SUVRs) were calculated by averaging
the four cortical regions, frontal, which are anterior/posterior
cingulate, lateral parietal, and lateral temporal cortices (Klunk
et al., 2004; Xue et al., 2020), and dividing the ROIs by the whole
cerebellum reference region. For tau PET, the inferior temporal
cortex (ITC) and the Braak V/VI region (specific regions were
shown in Supplementary Table 1) were selected as target ROIs.
ITC and Braak V/VI indicated early and late stages of tangle
pathology, respectively (Braak et al., 2006; Johnson et al., 2016).
The [18F]flortaucipir data were corrected for partial volume
effects using the geometric transfer matrix approach and divided
by the inferior cerebellar GM reference region (Baker et al., 2017).
The predefined meta-ROIs in FDG PET of AD were composed of
the angular gyrus, posterior cingulate, and ITC normalized to the
pons and vermis (Herholz et al., 2002).

Cognition Assessment
Cognition was assessed using the longitudinal Mini-Mental State
Examination (MMSE) and Clinical Dementia Rating Sum of
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TABLE 1 | Characteristics of ADNI participants.

CU CI P MCI AD P

No. 200 141 CU vs. CI 101 40 MCI vs. AD

Age at baseline, ya 70.95 ± 6.27 72.25 ± 7.08 0.074417 72.47 ± 6.69 71.72 ± 8.06 0.57102

Female 115 (57.5%) 60 (42.6%) <0.05 41 (40.6%) 19 (47.5%) 0.454664

Education, y 16.77 ± 2.39 15.98 ± 2.82 <0.05 16.21 ± 2.98 15.40 ± 2.31 0.077458

ApoE e4 positive 71 (35.7%) 61 (43.3%) <0.01 38 (37.6%) 23 (57.5%) 0.097857

MMSE at baseline 29.11 ± 1.10 27.61 ± 2.32 <0.0001 28.15 ± 1.74 26.28 ± 2.99 <0.0001

CDRSB at baseline 0.13 ± 0.47 1.32 ± 1.11 <0.0001 0.98 ± 0.65 2.19 ± 1.51 <0.0001

CSF Aβ42, ng/L 1332.84 ± 643.16 1029.24 ± 660.36 <0.0001 1159.51 ± 703.67 700.33 ± 375.32 <0.0001

CSF Aβ42 positive 61 (30.5%) 82 (58.2%) <0.0001 48 (47.5%) 34 (85.0%) <0.0001

Amyloid PET SUVR 1.11 ± 0.18 1.26 ± 0.26 <0.0001 1.20 ± 0.24 1.42 ± 0.22 <0.0001

Amyloid PET positive 63 (31.5%) 92 (65.2%) <0.0001 56 (55.4%) 36 (90.0%) <0.0001

CSF p-tau, ng/L 22.21 ± 10.85 29.65 ± 17.95 <0.0001 26.67 ± 15.16 37.15 ± 22.06 <0.001

CSF p-tau positive 83 (41.5%) 95 (67.4%) <0.0001 62 (61.4%) 33 (82.5%) <0.05

Tau PET in ITC SUVR 1.99 ± 0.28 2.65 ± 1.20 <0.0001 2.28 ± 0.74 3.60 ± 1.57 <0.0001

Tau PET in ITC positive 41 (20.5%) 80 (56.7%) <0.0001 46 (45.5%) 34 (85.0%) <0.0001

Tau PET in Braak5/6 SUVR 1.81 ± 0.19 2.17 ± 0.70 <0.0001 1.95 ± 0.33 2.72 ± 1.02 <0.0001

Tau PET in Braak5/6 positive 40 (20.0%) 72 (51.1%) <0.0001 40 (39.6%) 32 (80.0%) <0.0001

Hippocampal volume, cm3 −0.059 ± 0.808 −1.09 ± 1.11 <0.0001 −0.80 ± 1.03 −1.83 ± 0.95 <0.0001

Hippocampal volume positive 51 (25.5%) 95 (67.4%) <0.0001 60 (59.4%) 35 (87.5%) <0.001

Temporal meta-ROI thickness, mm 3.01 ± 0.15 2.80 ± 0.28 <0.0001 2.86 ± 0.25 2.65 ± 0.28 <0.0001

Temporal meta-ROI thickness positive 41 (20.6%) 90 (63.8%) <0.0001 56 (55.4%) 34 (85.0%) <0.01

CSF t-tau, ng/L 244.13 ± 98.70 306.61 ± 152.66 <0.0001 281.77 ± 130.47 369.34 ± 185.41 <0.01

CSF t-tau positive 90 (45.0%) 95 (67.4%) <0.0001 62 (61.4%) 33 (82.5%) <0.01

FDG-PET meta-ROI SUVRa 1.33 ± 0.11 1.22 ± 0.14 <0.0001 1.26 ± 0.13 1.11 ± 0.12 <0.0001

FDG-PET meta-ROI SUVR positive 34 (24.1%) 85 (62.0%) <0.0001 52 (52.5%) 33 (86.8%) <0.0001

plasma NfL, ng/L 35.92 ± 15.72 43.66 ± 20.62 <0.01 41.82 ± 20.90 48.28 ± 19.44 <0.05

plasma NfL positive 66 (47.8%) 81 (69.8%) <0.01 52 (62.7%) 29 (87.9%) <0.01

Aβ, β-amyloid; amyloid PET, [18F]florbetapir PET; CDRSB, Clinical Dementia Rating Sum of Boxes; CI, cognitively impaired; CU, cognitively unimpaired; FDG-PET, [18F]fluorodeoxyglucose

PET; ITC, inferior temporal cortex; MMSE, Mini-Mental State Examination; NfL, neurofilament light; p-tau, phosphorylated at Thr181; ROI, region of interest; tau PET, [18F]flortaucipir

PET; SUVR, standardized uptake value ratio. Data are presented as mean (SD) or n (%).
aThe population sample was normally distributed using Kolmogorov-Smirnov Z-test, continuous biomarkers were compared between different groups using Student’s t-test.

Boxes (CDRSB). According to the interquartile range (IQR; 6–
8 years), we selected seven-time points from baseline to 12
years (baseline, 2, 4, 6, 8, 10, and 12 years, respectively) for the
longitudinal cognitive assessment.

AT(N) Definitions
AT(N) biomarkers included CSF Aβ42 (A1), amyloid
PET ([18F]florbetapir) (A2), CSF p-tau (T1), tau PET
([18F]flortaucipir) SUVR in the ITC (T2) and Braak V/VI
region (T3), hippocampal volume ([N]1), temporal meta-ROI
cortical thickness ([N]2), CSF t-tau ([N]3), AD-characteristic
FDG PET SUVR ([N]4), and plasma NfL ([N]5). For CSF Aβ

positivity, we used a published cutoff (CSF Aβ42 level, <880
ng/L; Hansson et al., 2018). For amyloid PET, we selected a
cutoff of 1.11, which is the upper 95% confidence interval above
the mean of a young normal control group (Joshi et al., 2012).
Binarization of other biomarkers (T and [N]) was performed
using cutoffs established by the Youden index (Aβ-positive MCI
vs. Aβ-negative CU, with the Aβ status defined by the CSF Aβ42).
Furthermore, the mean ± 2 SD from Aβ-negative CU controls

(+2 SD for amyloid PET, tau PET, CSF tau, and plasma NfL;
−2 SD for CSF Aβ42, hippocampal volume, temporal cortical
thickness, and FDG PET), along with 90% sensitivity for AD,
were used as a sensitivity analysis.

Statistical Analyses
Demographics and continuous biomarkers were compared
between different groups using Mann–Whitney U-test or
Student’s t-test according to normality of the population sample
using Kolmogorov-Smirnov Z-test, and binary biomarkers
using Fisher’s exact test. Associations between biomarkers
were analyzed using Spearman’s rank correlation (ρ), Cohen’s
kappa coefficient (κ), and percentage agreement (concordance).
Prevalence estimates for AT(N) categories were calculated with
95% confidence intervals generated using bootstrap resampling
(n = 1,000). Prevalence of AT(N) categories was compared
between different biomarkers within the group using related
independent sample non-parametric test (McNemar test for
A and Cochran’s Q-test for T or [N]). The relationships
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between AT(N) combinations and cognitive trajectories (12-
year longitudinal MMSE and CDRSB scores) were examined
using a linear mixed-effects (LME) model (including age, sex,
and education as covariates, and time as a categorical variable)
with subject-specific intercepts and slopes. The goodness of
LME models with different AT(N) combinations was assessed by
marginal R2, which represented the fixed effect of LME models.
All analyses were performed using IBM SPSS Statistics 20, with
significance of the two-tailed test set to p < 0.05.

RESULTS

Study Participants
Demographics are presented in Table 1, and more detailed
information is shown in Supplementary Table 2. A significant
difference in age was not observed between CU and CI
participants, while more females, higher education level, and a
lower prevalence of APOE e4 were observed in the CU group.
No significant differences were observed in age, sex, education,
or APOE e4 between participants with MCI and AD (subgroups
of CI). MMSE scores, Aβ42, hippocampal volume, temporal
cortical thickness, and FDG PET decreased sequentially, while
CDRSB scores, amyloid and tau PET, and CSF tau and NfL
increased sequentially among the CU, MCI, CI, and AD groups.
As plasma NfL levels were reported to be positively associated
with age (ρ = 0.471, p < 0.01) (Mattsson et al., 2017a, 2019),
we divided participants into younger and older groups based on
the median value (age = 72.25 y) and identified a significant
difference in NfL levels between these groups (p < 0.001).
Therefore, the prevalence of (N)+ using NfL was likely to vary
by age in the present cohort, so we calculated the cutoff based on
age stratification.

Biomarker Relationships
Cutoffs were defined as CSF Aβ42 <880 ng/L (A1), amyloid PET
>1.1 SUVR (A2), p-tau > 21.11 ng/L (T1), ITC tau PET >2.122
SUVR (T2), Braak V/VI tau PET >1.938 SUVR (T3), adjusted
hippocampal volume <-0.4477 cm3 (N1), temporal meta-ROI
thickness <2.9214mm (N2), CSF t-tau > 233.6 ng/L (N3), FDG
PET meta-ROIs <1.2599 SUVR (N4), and plasma NfL levels
>30.35 ng/L in younger participants and >36.45 ng/L in older
participants. Similar cutoffs were obtained using 90% sensitivity
for AD, while mean ± 2 SD from Aβ-negative CU controls
resulted in more conservative cutoffs (Supplementary Table 3).

Continuous biomarkers within each component were
correlated: CSF Aβ42 vs. amyloid PET (ρ = −0.671; Figure 1A),
p-tau vs. ITC tau PET (ρ = 0.379) and Braak V/VI (ρ =

0.380), as well as between the 2 tau PET measures (ρ = 0.851;
Figures 1B–D); hippocampal volume vs. temporal cortical
thickness (ρ = 0.584), vs. FDG PET (ρ = 0.448), and vs. NfL
(ρ = −0.395); temporal cortical thickness vs. FDG PET (ρ =

0.426), and vs. NfL (ρ = −0.321); and FDG PET vs. NfL (ρ
= −0.326). Weak correlations were observed between CSF
t-tau and other neurodegeneration biomarkers: CSF t-tau
vs. hippocampal volume (ρ = −0.239), vs. temporal cortical
thickness (ρ=−0.215), vs. FDG PET (ρ=−0.145, p< 0.05) and

vs. NfL (ρ = 0.188; all p < 0.001, except as specifically indicated;
Figures 1E–N).

Using binary data, there was a substantial agreement
between amyloid biomarkers (Figure 1A), between the
two tau PET measures (Figures 1B–D), and a moderate
agreement between the two MRI imaging measures (Figure 1E).
Fair agreement was identified between p-tau and tau PET
(Figures 1B,C), between MRI imaging measures, FDG PET,
and NfL (Figures 1G,H,J,K,N), whereas slight agreement
between CSF t-tau and other neurodegeneration biomarkers
(Figures 1F,I,L,M).

Prevalence Measures in CU Participants
The prevalence of AT(N) categories in CU and CI participants
is summarized in Figures 2, 3 and Supplementary Tables 4, 5.
When only considering A and T in the CU group, A-T- was
the most common category (range 43.5% [A1T1; 95% confidence
interval, 36.6–50.5%] to 62.0% [A2T2; 95% confidence interval,
55.0–68.8%]). When comparing A biomarkers, slightly more
were negative when using CSF Aβ42 instead of amyloid PET (p
> 0.05). The highest positivity for T was observed when CSF p-
tau were used for both A+ or A– (p < 0.001) (Figure 2A). Based
on these results, the use of CSF p-tau may substantially increase
the positive rate of the T component compared to tau PET in
CU participants.

When adding (N) biomarkers, the most prevalent category
was A-T-(N)- (range 26.1% [A2T1(N)5; 95% confidence interval,
18.7–33.3%] to 50.8% [A2T2(N)2; 95% confidence interval,
44.1–58.0%]). Although eight possible categories were identified
for each AT(N) variants, A+T+(N)+, A+T-(N)+, and A-
T+(N)+ had very low frequencies when using MRI imaging and
FDG PET. A+T+(N)-, A+T-(N)+, and A-T+(N)- were almost
lacking in the combination of CSF p-tau and t-tau since a strong
correlation (ρ = 0.980, p < 0.001) and almost perfect agreement
(κ =0.876; concordance = 93.8%) was observed between them,
as previous study reported (Blennow et al., 1995). Among the
different biomarkers for (N), CSF t-tau and plasma NfL were the
most prevalent biomarkers resulting in (N)+ cases (p < 0.001)
(Figure 3A).

Prevalence Measures in CI Participants
A+T+ was the main category when only A and T biomarkers
were used for CI participants (range 39.7% [A1T3; 95%
confidence interval, 31.8–48.4%] to 54.6% [A2T1; 95%
confidence interval, 45.7–63.5%]). A and T categories of different
AT(N) variants in the CI group showed similar trends to the CU
[i.e., higher prevalence of A+ using amyloid PET (p < 0.05) and
lower prevalence of T+ using tau PET (p < 0.005)] (Figure 2B).
There were significant differences in A and T categories between
the two subgroups of CI (Fisher exact test, all p < 0.001). In
participants with MCI, A-T- were the most common categories
when using tau PET in Braak V/VI (Figure 2C). In the AD
group, A+T+ accounted for approximately 75% (range 70%
[A1T3; 95% confidence interval, 55.8–85.3%] to 82.5% [A2T1;
95% confidence interval, 69.8–93.3%]); the difference from other
groups was the lower prevalence of T+ obtained using CSF p-tau
than tau PET in the case of A- (p > 0.05) (Figure 2D).
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FIGURE 1 | Scatterplots show the association between continuous measures for amyloid (A), tau (B–D), and neurodegeneration (E–N) biomarkers. Dashed lines

indicate cutoff points. Spearman’s correlations (ρ) with p-values, Cohen’s kappa statistic (κ), concordance (percentage showing both biomarkers positive or negative),

(Continued)
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FIGURE 1 | and the slope (β) of regression curve are shown at the top of each panel. For A comparisons, the upper left and the lower right quadrants indicate

concordance positive (+/+) and negative (–/–). For T comparisons, lower left and upper right quadrants indicate concordance positive and negative, respectively. For

the comparisons of (N)3 with (N)5, the upper right and lower left quadrants indicate concordance positive and negative, respectively. For the four remaining (N)

comparisons, concordant positives are shown in the upper left quadrant, whereas concordant negatives are shown in the lower right quadrant. Percentage figures

across quadrants indicate distribution (percentagewise) of participants. Aβ, β-amyloid; AT(N), β-amyloid, tau, and neurodegeneration classification system; CI,

cognitively impaired; CU, cognitively unimpaired; ITC, inferior temporal cortex; NfL, neurofilament light; p-tau, tau phosphorylated at Thr181; ROI, region of interest;

SUVR, standardized uptake value ratio; t-tau, total tau.

FIGURE 2 | Prevalence of different AT(N) categories in different AT variants among cognitively unimpaired (CU) (A) and cognitively impaired (CI) (B) participants in the

ADNI. Mild cognitively impaired (MCI) (C) and Alzheimer’s disease (AD dementia) (D) are two subgroups of the CI group. CSF Aβ42 (A1); amyloid PET whole

cerebellum standardized uptake value ratio (SUVR) (A2); CSF tau phosphorylated at Thr181 (T1); tau PET inferior temporal cortex SUVR (T2); tau PET Braak V/VI

SUVR (T3). AT(N), β-amyloid, tau, and neurodegeneration classification system.

When adding (N) biomarkers, the most prevalent category
was A+T+(N)+ (range 29.9% [A1T3(N)4; 95% confidence
interval, 23.3–38.6%] to 51.8% [A2T1(N)3; 95% confidence
interval, 43.2–60.3%]), and the frequencies of T+(N)- and
T-(N)+ in the combination of CSF p-tau and t-tau were
relatively low (Figure 3B). As mentioned above, A-T-N- was
the main category when using tau PET in Braak V/VI
combined with some N biomarkers in the MCI group
(Supplementary Figure 1A). The AD group had the most
A+T+(N)+ (range 60.6% [A1T3(N)5; 95% confidence interval,
44.1–76%] to 80% [A2T1(N)3; 95% confidence interval, 67.6–
92.1%]) among the three groups. Again, several categories were
lacking or had low frequencies (A-T+N- and A-T-N+ when
using tau PET) (Supplementary Figure 1B). The prevalence of
all the (N) biomarkers resulting in (N)+ cases was approximative,
except it was relatively low when using FDG PET in CI
individuals (p > 0.05) (Figure 3B).

Longitudinal Cognition
The overall findings for longitudinal cognition using
continuous predictors are summarized in Figures 4, 5 and
Supplementary Tables 6–9. In CU participants, age and
education significantly affected cognition (age, p = 0.027 and

education, p = 0.048 in CDRSB; age, p = 0.025 and education, p
< 0.001 in MMSE), consistent with previous findings (Compton
et al., 2000; Ardila and Moreno, 2001). When using a single
AT(N) biomarker to predict cognitive changes, just the MRI
imaging contributed significantly (temporal cortical thickness,
[N]2, p = 0.047, R2 = 7.54% in CDRSB; hippocampal volume,
[N]1, p = 0.025, R2 = 10.76% in MMSE) (Figures 4G,H).
The best AT(N) variants capturing changes in cognition in
CDRSB and MMSE were A2T3(N)2 (amyloid PET, tau PET
in Braak V/VI regions, and temporal cortical thickness) and
A2T1(N)1 (amyloid PET, CSF p-tau, and hippocampal volume),
respectively, but not all included biomarkers contributed
significantly (A2, p = 0.795, T3, p = 0.396, and [N]2, p = 0.064,
R2 = 7.84% in CDRSB; A2, p= 0.043, T1, p= 0.081, and [N]1, p
= 0.037, R2 = 12.29% in MMSE) (Figures 4B,E). We considered
whether random effects accounted for a greater proportion of
the variance because the marginal R2 for CU participants was
relatively low. Then, we calculated conditional R2 using MRI
imaging biomarkers (temporal cortical thickness for CDRSB
and hippocampal volume for MMSE). After considering the
random effect, the conditional R2 increased to 19.32% and
33.55% for the CDRSB and MMSE scores, respectively. These
results indicated that longitudinal cognition in CU participants
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FIGURE 3 | Prevalence of different AT(N) categories in different AT(N) variants among cognitively unimpaired (CU) (A) and cognitively impaired (CI) (B) participants in

the ADNI. CSF Aβ42 (A1); amyloid PET whole cerebellum standardized uptake value ratio (SUVR) (A2); CSF tau phosphorylated at Thr181 (T1); tau PET inferior

temporal cortex SUVR (T2); tau PET Braak V/VI SUVR (T3); hippocampal volume [(N)1]; temporal meta-ROI thickness [(N)2]; CSF total tau [(N)3]; FDG PET meta-ROI

SUVR [(N)4]; plasma neurofilament light [(N)5]. AT(N), β-amyloid, tau, and neurodegeneration classification system.

was mainly associated with individual characteristics, and
MRI measurements were the best biomarkers to predict
cognitive changes.

In CI participants, individual characteristics were not
significantly associated with cognitive decline. Almost all single
AT(N) biomarkers could predict longitudinal cognition, except
CSF p-tau (p = 0.061) and t-tau (p = 0.051) in CDRSB,
and the marginal R2 using MRI imaging and tau PET was
relatively higher than others (Supplementary Table 6). The
AT(N) variants combining CSF Aβ42, tau PET, and temporal
cortical thickness were the best predictors in both CDRSB
and MMSE, and almost all included variables contributed

significantly (CDRSB: A1T2[N]2, A1, p = 0.061, T2, p = 0.013,
[N]2, p < 0.001, R2 = 37.94%; A1T3[N]2, A1, p= 0.040, T3, p=
0.036, [N]2, p < 0.001, R2 = 37.53%; MMSE: A1T3[N]2, A1, p=
0.018, T3, p < 0.001, [N]2, p < 0.001, R2 = 36.43%; A1T2[N]2,
A1, p = 0.026, T2, p = 0.001, [N]2, p = 0.001, R2 = 35.57%)
(Figures 5B,C,E,F). Then, we found that the interaction between
time and AT(N) variants significantly improved the goodness of
fit (AIC and BIC) using a paired t-test (p < 0.001 for CDRSB
andMMSE), and interactions dominated the main effects. Again,
CSF Aβ42, tau PET, and temporal cortical thickness were the best
combinations in both scales, and all interactions were significant
(CDRSB: A1T2[N]2, A1, p > 0.05, T2, p > 0.05, [N]2, p > 0.05,
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FIGURE 4 | Associations between different AT(N) combinations and longitudinal cognition in the CU group. Marginal R2 for different AT(N) variants to predict

longitudinal clinical dementia rating sum of boxes (CDRSB) and mini-mental state examination (MMSE) for cognitively unimpaired (CU), respectively (divided by A

biomarkers) (A,D). The selected models in (B,C) and (E,F) are the top two best models for different cognitive scales. The LME models with significant AT(N)

biomarkers to predict longitudinal are CDRSB and MMSE, respectively (G,H); AT(N) variants chosen in the model, p-values, and marginal R2 are shown at the top

(CDRSB) or bottom (MMSE) of each panel; 25 and 75 refer to 25th and 75th quartiles, where a lower value indicates a more abnormal biomarker. Aβ, β-amyloid;

AT(N), β-amyloid, tau, and neurodegeneration classification system; ITC, inferior temporal cortex; p-tau, tau phosphorylated at Thr181; ROI, region of interest; SUVR,

standardized uptake value ratio.
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FIGURE 5 | Associations between different AT(N) combinations and longitudinal cognition in the CI group. Marginal R2 for different AT(N) variants to predict longitudinal

clinical dementia rating sum of boxes (CDRSB) and mini-mental state examination (MMSE) for cognitively impaired (CI), respectively (divided by A biomarkers) (A,D).

(Continued)
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FIGURE 5 | The selected models in (B,C) and (E,F) are the top two best models for the different cognitive scales. The top two best models with an interaction

between time and AT(N) variants to predict longitudinal CDRSB and MMSE, respectively (G–J); AT(N) variants chosen in the model and p-values, and marginal R2 are

shown at the top (CDRSB) or bottom (MMSE) of each panel; 25 and 75 refer to 25th and 75th quartiles, where a lower value indicates a more abnormal biomarker.

Aβ, β-amyloid; AT(N), β-amyloid, tau, and neurodegeneration classification system; ITC, inferior temporal cortex; ROI, region of interest; SUVR, standardized uptake

value ratio.

A1×Time, p = 0.026, T2×Time, p < 0.001, [N]2×Time, p <

0.001, R2 = 52.76%; A1T3[N]2, A1, p> 0.05, T3, p> 0.05, [N]2, p
> 0.05, A1×Time, p = 0.009, T3×Time, p < 0.001, [N]2×Time,
p< 0.001, R2 = 52.23%;MMSE: A1T3[N]2, A1, p> 0.05, T3, p>

0.05, [N]2, p > 0.05, A1×Time, p = 0.002, T3×Time, p < 0.001,
[N]2×Time, p < 0.001, R2 = 50.84%; A1T2[N]2, A1, p > 0.05,
T2, p > 0.05, [N]2, p > 0.05, A1×Time, p = 0.010, T2×Time, p
< 0.001, [N]2×Time, p < 0.001, R2 = 50.25%) (Figures 5G–J).

Finally, similar findings were observed when using the LME
model with time as a covariate to verify the results using
continuous predictors (Supplementary Table 9).

Sensitivity Analyses
We repeated the AT(N) prevalence analyses using alternative
cutoffs (Supplementary Table 10). Using cutoffs from 90%
sensitivity for AD, except for more amyloid positivity using CSF
Aβ42 in CU participants, other results were consistent with the
data obtained from the main cutoffs. However, cutoffs defined
by the mean ± 2 SD from Aβ-negative CU controls were more
conservative. The lowest prevalence of T+ was obtained when
using CSF rather than PET, and temporal cortical thickness in all
the participants was negative.

DISCUSSION

In this study, we found that different combinations of AT(N)
biomarkers exerted different effects on the category prevalence
and predictions of cognitive decline. First, the difference in the
composition of AT(N) categories between CU and CI individuals
is not surprising. Categories representing the AD continuum
were the most common in CI participants, while more subjects
with non-AD pathological changes were observed in the CU
group (Rami et al., 2011; Jack et al., 2018; Knopman et al.,
2018; Carandini et al., 2019). Moreover, different AT(N) variants
resulted in considerable differences in prevalence, such as a lower
prevalence of T+ when using tau PET in all groups and a
higher prevalence of N+ when using fluid biomarkers in the
CU group. Finally, different AT(N) combinations have different
associations with cognitive changes, with differences observed
between CU and CI groups (MRI was more influential in CU
participants and tau PET in CI participants). Taken together,
these results indicate that different combinations lead to different
AT(N) classifications of individuals and different predictions of
longitudinal cognition. Our results have important implications
for choosing AT(N) combinations according to different needs
of research or clinical applications. For instance, we tend to use
dynamic fluid examinations for early screening and prevention,
and cognition may be predicted by non-invasive MRI imaging in
the CU group. Imaging measures that represent the magnitude

of the neuropathological load or damage accumulated over time,
especially tau PET, may greatly assist with the accurate clinical
staging and determination of the prognosis of patients with
cognitive impairment.

Biomarkers of AD mainly include fluids and imaging. Here,
we chose seven classic biomarkers mentioned in the NIA-AA
Research Framework 2018 (Jack et al., 2016, 2018) and plasma
NfL, a candidate neurodegeneration marker identified recently
(Mattsson et al., 2017a, 2019). However, different biomarkers in
the specific AT(N) component may be discordant (Vos et al.,
2016; Jack et al., 2018). In our study, the continuous relationship
between CSF Ab42 and amyloid PET was “L-shaped” rather
than linear (Figure 1A) (Landau et al., 2013; Palmqvist et al.,
2015). This may be due to a temporal offset between them
(Mattsson et al., 2015; Palmqvist et al., 2016; Vlassenko et al.,
2016). In addition, the correlation between CSF p-tau and tau
PET was imperfect because p-tau seems to plateau later in the
disease (Fagan et al., 2014) whereas the tau PET signal continues
to increase (Mattsson et al., 2017b). Among biomarkers in
the (N) component, MRI imaging tends to reflect cumulative
neuronal loss and shrinkage of the neuropil (Bobinski et al.,
2000; Zarow et al., 2005; Barkhof et al., 2007), CSF t-tau, and
plasma NfLmanifest the intensity of neuronal injury dynamically
(van Rossum et al., 2012; Zetterberg, 2016), and FDG PET
likely indicates both processes (Alexopoulos et al., 2014). These
differences may explain the discordance among (N) biomarkers.

Regarding the AT(N) prevalence, we noted that both AT(N)
categories and variants differed between CU and CI participants.
Normal AD biomarkers (A-T-[N]-) and non-AD pathological
change (A-T+[N]-, A-T+[N]+, and A-T-[N]+) account for
most CU individuals, whereas the Alzheimer’s continuum
(A+T+[N]-, A+T+[N]+, A+T-[N]-, and A+T-[N]+) accounts
for CI individuals, especially AD (A+T+[N]-, A+T+[N]+)
(Jack et al., 2018). Nevertheless, approximately 1/4 of CU
individuals are classified as AD continuum without cognitive
symptoms. Cognition is also a continuum and the definition
of CU is independent of biomarker findings according to
the NIA-AA research framework (Jack et al., 2018). In our
study, the overall prevalence of A+ in CU participants was
similar, consistent with a metaanalysis (Jansen et al., 2015).
However, greater increases in amyloid positivity were observed
between the two groups when using amyloid PET. This may
be because the CSF analysis detects cerebral Aβ accumulation
earlier than PET (Mattsson et al., 2015; Palmqvist et al., 2016;
Vlassenko et al., 2016). The same findings were obtained for tau
positivity when comparing CSF and PET due to a temporal lag
(Mattsson et al., 2017b; McDade and Bateman, 2018). Among
the neurodegeneration biomarkers, CSF t-tau and plasma NfL
were more common in CU participants, whereas no evident
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differences were observed in CI participants. These results are
consistent with several studies showing that CSF t-tau and blood
NfL levels are increased before symptom onset (Mattsson et al.,
2017a; Preische et al., 2019).

We repeated prevalence calculations using different cutoffs to
verify the prevalence across AT(N) categories and found that the
results were not completely consistent. This finding highlights
that the optimization of categorization strategies is important for
future studies.

Here, we analyzed the predictive effect of different AT(N)
variants on longitudinal cognition evaluated using both the
CDRSB and MMSE. CDRSB may enable a more detailed
analysis of subtle changes with different stages of dementia
severity (O’Bryant et al., 2008). First, optimal variants differ by
clinical stage. Only MRI measures were significantly associated
with cognitive changes in CU participants, whereas the best
model for predicting cognition in CI participants included CSF
Aβ42, tau PET, and cortical thickness. When using a single
AT(N) biomarker for the prediction, no obvious difference was
identified between CSF and PET amyloid plaques. This finding
may indicate that CSF Aβ42 and amyloid PET can be used
interchangeably as several studies have reported (Blennow and
Zetterberg, 2018; Hansson et al., 2018). When considering the
AT(N) combinations, we found that the amyloid pathology
contributed the least to longitudinal cognition in the CI group.
This implies that cognitive impairment is weakly related to
extracellular Aβ burden and is presumably driven by other factors
(Villemagne et al., 2011, 2013; de Wilde et al., 2019), consistent
with the characteristics of “A” as state biomarkers (Knopman
et al., 2018). However, CSF p-tau is increased earlier in the disease
course than tau PET (Blennow and Zetterberg, 2018; La Joie et al.,
2018; Mattsson-Carlgren et al., 2020). Therefore, between the two
subgroups of CI, the difference in tau PET was more significant
than that in CSF p-tau. These results might explain why tau PET
far exceeded CSF p-tau levels in the longitudinal prediction of
cognition in the CI group. The early tangle pathology identified
using tau PET was a better predictor of CDRSB than MMSE,
consistent with the characteristics of the scales. Compared to
other N biomarkers, MRI measures, especially cortical thickness,
were the best. Since hippocampal volume is strongly related
to ICV (Jack et al., 2015), different methods for adjusting the
volume by ICV associated with sex, age, and study populations
may affect study power (Schwarz et al., 2016). A study proposed
using thickness measurements, rather than volumes, to assess
neurodegeneration in AD cohorts with a large age range (Schwarz
et al., 2016). Our results also suggested that cortical thickness
may predict cognition more precisely. Among all N biomarkers,
the lowest marginal R2 was obtained when using CSF t-tau to
predict longitudinal cognition in CI participants. Firstly, CSF t-
tau was reported to be related to multiple variables (age, sex, or
education), which may attenuate the association with cognition
under adjustment for such covariables (Mielke et al., 2019).
Furthermore, recent findings showed that t-tau may be less
specific to AD pathology (Buckley et al., 2019;Mielke et al., 2021),
and its longitudinal trajectory along the AD continuum is still
controversial (Vemuri et al., 2010; Kester et al., 2012; Toledo
et al., 2013; Lleo et al., 2019). Similar findings were obtained when

considering interactions in CI participants, but the interactions
dominated the main effects. Although AT(N) variants were able
to predict cognitive changes, their marginal effects relied on the
time level. Overall, we obtained relatively robust results for this
cohort (MRI for CU participants and the combination of tau
PET and cortical thickness for CI participants). Compared to a
recent study recruiting participants from Swedish BioFINDER
(Mattsson-Carlgren et al., 2020), we confirmed the importance
of tau PET in the AD diagnosis and staging, and highlighted that
cortical thickness may have a highly significant contribution to
cognitive decline.

This study has several limitations. First, the sample size in our
study was moderate, whichmay affect the study power. Especially
in the prediction of longitudinal cognition, the sample size of
the AD group was too small, which may lead to deviations. So,
it limited more refined analysis of subgroups. Secondly, we did
not consider the Aβ42/Aβ40 ratio because the Aβ40 of many
participants was missing in the database (detailed information
was shown in Supplementary Table 2). Additionally, though our
research has obtained relatively robust results, it still warrants
independent validation in other larger cohorts covering all
biomarkers in this study. Furthermore, the greater individual
heterogeneity of CU participants may explain the low marginal
R2. Then, differences were observed among different cutoff
strategies, and the cutoffs using in the study were sample
specific, which may be biased to the sample. Therefore, more
approaches for selecting cutoffs or alternatives to binarization
(semicontinuous scale; Jack et al., 2016) must be tested. Finally,
we only analyzed typical AD biomarkers in this study. With the
emergence of an increasing number of biomarkers, they may also
need to be included.

Collectively, the proposed AT(N) framework provides a
more precise division of the Alzheimer’s continuum based
on the pathology (Jack et al., 2018), but different biomarkers
for defining AT(N) cannot be used interchangeably. Each
component of biomarkers included in the AT(N) system
classification plays different roles in the stating and staging
of AD, and the optimal combinations for predicting cognition
may differ by cognitive status. Furthermore, different strategies
for discontinuous biomarkers will be an important area for
future studies.
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